Design of Embedded Systems Using
68HC12/11 Microcontrollers

Design of
C

l Embedded Systems _
| Using 68HC12/11 By Richard E. Haskell

Microcontrollers

: &
B oo | Download now
| Read Online ©

Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard
E. Haskell

Thisisthefirst book to describe, in detail, the new Motorola 68HC12
microcontroller, how to program it, and how to design embedded systems using
the 68HC12. It shows how WHY P (aversion of Forth written specifically for this
book) can be used to program the new 68HC12 microcontroller in an efficient
and interactive way. It includes an abundance of worked examples and complete
C++ code for the WHY P host that runs on the PC. Subroutines and Stacks.
68HC12 Arithmetic. WHY P-An Extensible Language. Branching and L ooping.
Parallel Interfacing. The Serial Peripheral Interface (SPI). Analog-to-Digital
Converter. Timers. The Serial Communications Interface (SCI). Designing with
Interrupts. Strings and Number Conversions. Program Control and Data
Structures. Fuzzy Control. Special Topics. WHY P12 C++ Classes. WHY P12
C++ Main Program. For eectrical and computer engineers who want to learn
about the new Motorola 68HC12 microcontroller, how to program it, and how to
design embedded systems using it.

¥ Download Desi an of Embedded Systems Using 68HC12/11 Microc
...pdf

B Read Online Design of Embedded Systems Using 68HC12/11 Micr
...pdf

http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081

Design of Embedded Systems Using 68HC12/11
Microcontrollers

By Richard E. Haskell

Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell

Thisisthe first book to describe, in detail, the new Motorola 68HC12 microcontroller, how to program it,
and how to desigh embedded systems using the 68BHC12. It shows how WHY P (aversion of Forth written
specifically for this book) can be used to program the new 68HC12 microcontroller in an efficient and
interactive way. It includes an abundance of worked examples and complete C++ code for the WHY P host
that runs on the PC. Subroutines and Stacks. 68HC12 Arithmetic. WHY P-An Extensible Language.
Branching and Looping. Parallel Interfacing. The Serial Peripheral Interface (SPI). Analog-to-Digital
Converter. Timers. The Serial Communications Interface (SCI). Designing with Interrupts. Strings and
Number Conversions. Program Control and Data Structures. Fuzzy Control. Special Topics. WHY P12 C++
Classes. WHY P12 C++ Main Program. For electrical and computer engineers who want to learn about the
new Motorola 6BHC12 microcontroller, how to program it, and how to design embedded systems using it.

Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell Bibliography

- Sales Rank: #1458111 in Books

- Published on: 1999-10-25

- Original language: English

- Number of items: 1

- Dimensions: 9.75" hx 1.00" w x 7.50" |, 2.22 pounds
- Binding: Paperback

- 569 pages

i Download Design of Embedded Systems Using 68HC12/11 Microc ...pdf

B Read Online Design of Embedded Systems Using 68HC12/11 Micr ...pdf

http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081

Download and Read Free Online Design of Embedded Systems Using 68HC12/11 Microcontrollers By
Richard E. Haskell

Editorial Review

From the Inside Flap
Preface

Many people think of acomputer as a PC on a desk with a keyboard and video monitor. However, most of
the computers in the world have neither a keyboard nor a video monitor. Rather they are small
microcontrollers—a microprocessor, memory, and 1/0 all on a single chip—that are embedded in amyriad of
other products such as automobiles, televisions, VCRs, cameras, copy machines, cellular telephones, vending
machines, microwave ovens, medical instruments, and hundreds of additional products of all kinds. This
book is about how to program microcontrollers and use them in the design of embedded systems.

A popular microcontroller that has been used in awide variety of different productsisthe Motorola 68HC11.
Motorola has recently introduced an upgrade of this microcontroller, the 6BHC12, that has new, more
powerful instructions and addressing modes. This book emphasizes the use of the 68HC12 while at the same
time providing information about the 68HC11. It can therefore be used in courses that use both 68HC12 and
68HCII microcontrollers.

This book is the result of teaching various microcomputer interfacing courses over the past 20 years. While
the technology may change, the basic principles of microcomputer interfacing remain largely the same and
these basic principles are stressed throughout this book. However, microcomputer interfacing is a subject
that islearned only by doing. The courses that | have taught using this material have al been project-oriented
courses in which the students design and build real microcomputer interfacing projects.

A definite trend in microcomputer interfacing and in digital design in general is a shift from hardware design
to software design. Microcomputer interfacing has always involved both hardware and software
considerations. However, the increasingly large-scal e integration of the hardware together with sophisticated
software tools for designing hardware means that even traditiona hardware design is becoming more and
more a software activity.

In the past most software for microcomputer interfacing has been written in assembly language. This means
that each time a new and better microprocessor comes out the designer must first learn the new assembly
language. The advantage of assembly language isthat it is"closest to the hardware" and will allow the user
to do exactly what he or she wants in the most efficient manner. While some feel that assembly language
programs are more difficult to write and maintain than programs written in a high-level language, the major
disadvantage of assembly language programsis related to the obsolescence of the microprocessor—when
upgrading to anew or different microprocessor, all of the software hasto be rewritten! Even when upgrading
from a68HCI | to a 68HC12, which is upward compatible at the sourcecode level, to get the best
performance from the 68HC12 you will need to rewrite the code to use the newer, more powerful
instructions and addressing modes.

This has led to atrend of using high-level languages such as C or C+ + for microcomputer interfacing. While
this helps to solve the obsolescence problem—much of the same high-level code might be reusable with a
new microprocessor—high-level languages come with their own problems. The development environment is
not always the most convenient. One has to edit the program, compile it, load it, and then run it to test it on
the real hardware. This edit-compile-test cycle can be very time consuming for large programs. Without

sophisticated run-time debugging tool s the debugging of the program on real hardware can be very
frustrating. When designing microcomputer interfaces you would like to be as close to the hardware as
possible.

What you would like is a computer language with the advantages of both a high-level language and assembly
language, with none of the disadvantages. It would be nice if the language were al so interactive so that you
could sit at your computer terminal and literally "talk” to the various hardware interfaces. The language
should also produce compact code so that you can easily embed the code in PROMS or flash memory for a
stand-alone system. While you're at it why not embed the entire language in your target system so that you
can develop your program "on-line" and even upgrade the program in the field once the product is delivered.
Impossible, you say? In fact, just such alanguage exists for aimost any microprocessor you may want to use.
The language is Forth and we will use aderivative of it in this book to illustrate how easy microcomputer
interfacing can be.

We will use aunique version of Forth called WHY P (pronounced whip) that is designed for use in embedded
systems. WHY P stands for Words to Help Y ou Program. It is a subroutine threaded language which means
that WHY P words are just the names of 68HC12(11) subroutines. New WHY P words can be defined simply
by stringing previously defined WHY P words together.

A unique feature of Forth—and WHY P—isits simplicity. It is asimple language to learn, to use, and to
understand. In fact, in this book we will develop the entire WHY P language from scratch. We will see that
WHY P consists of two parts—some 68HC12 subroutines that reside on the target system (typically an
evaluation board) and a C+ + program that runs on a PC and communicates with the 68HC12 target system
through a serial line. In the process of developing the WHY P subroutines on the target system you will learn
68HC12 assembly language programming. When you finish the book you will aso know Forth. Previous
knowledge of C + + will be helpful in understanding the C+ + portion of WHY P that resides on the PC. The
complete C+ + source code isincluded on the disk that accompanies this book and in discussed in Chapters
16 and 17. However, these chapters are optional and are not required in order to use WHY P to program the
68HC12.

Y ou will discover that you can develop large software projects using WHY P in a much shorter time than you
could develop the same program in either assembly language or C. Y ou might be surprised at the number of
industrial embedded systems projects that have been developed in Forth. Many small companies and
consultants that use Forth don't talk much about it because many consider it a competitive advantage to be
able to develop software in a shorter time than others who program in assembly language or C.

In Chapter 1 you will learn about the architecture of the 68HC12 and how to write a simple assembly
language program, assemble it, download it to the target board, and executeit. Y ou will see how to write
68HC12 subroutines in Chapter 2 where you will learn how the system stack works. We will then develop a
separate data stack, using the 6BHC12 index register, X, as a stack pointer. This data stack will be used
throughout the book to pass parameters to and from our 68HC12 subroutines (WHY P words). We will seein
Chapter 2 that this makes it possible to access our 68HC12 subroutines interactively, by simply typing the
name of the subroutine on the PC keyboard.

In Chapter 3 we will study 68HC12 arithmetic with emphasis on the new 16-bit signed and unsigned
multiplication and division instructions available on the 68HC12. We will use these instructionsto create
WHY P words for all of the arithmetic operations.

The power of WHY P comes from the fact that you can define new WHY P words in terms of previously
defined words. This makes WHY P an extensible language in which every time you write a WHY P program

you are really extending the language by adding new words to its dictionary. Y ou will learn how to do thisin
Chapter 4.

In Chapter 5 we will took at the 68HC12 branching and looping instructions and see how we can use them to
build some high-level WHY P branching and looping words such asan IF ... ELSE ... THEN construct and a

FOR ... NEXT loop. We will also see in this chapter how we can do recursion in WHY P, that is, how we can
have aWHY P word call itself.

After thefirst five chapters you should have a good understanding of the 68HC12 instructions and how they
are used to create the WHY P language. The next six chapters will use WHY P as atool to explore and
understand the 1/0 capabilities of the 68HC12 (and 68HC11). The important topic of interruptsisintroduced
in Chapter 6 and specific examples of using interrupts in conjunction with various 1/0 functions are given in
Chapters 7-11.

Parallel interfacing will be discussed in Chapter 7 where examples will be given of interfacing a 6SHC12 to
seven-segment displays, hex keypads, and liquid crystal displays. Real-time interrupts are used to program
interrupt-driven traffic lights.

Chapter 8 will cover the 68HC12 Serial Peripheral Interface (SPI) where it will be shown how to interface
keypads and sevensegment displays using the SPI. The 68HCII and 68BHC12 Analog-to-Digital (A/D)
converter is described in Chapter 9 where an exampleis given of the design of adigital compass.

The 68HC12 programmable timer is discussed in Chapter 10 where examples are given of using output
compares, input captures, an

From the Back Cover

Thisisthefirst book to describe, in detail, the new Motorola 68HC12 microcontroller, how to program it,
and how to design embedded systems using the 68HC12. It shows how WHY P (aversion of Forth written
specifically for this book) can be used to program the new 68HC12 microcontroller in an efficient and
interactive way.

FEATURESBENEFITS

- A bridge between the 68HC12 and the 68HC11—Focuses on the 68HC12, but includes material for (and
provides software for) the older 68HC11.

- A new version of Forth—WHYP (Wordsto Help Y ou Program)—designed for use in embedded
systems

Complete C++ code for the WHYP host that runs on the PC—Provided with the book and described in
Chs. 16 and 17. Includes both the C++ program that runs on the PC, and the 68HC12 assembly language
program that runs on the target 68HC12 board. Excerpt. © Reprinted by permission. All rights reserved.
PrefaceMany people think of acomputer as a PC on a desk with a keyboard and video monitor. However,
most of the computersin the world have neither a keyboard nor a video monitor. Rather they are small
microcontrollers—a microprocessor, memory, and 1/0 all on a single chip—that are embedded in amyriad of
other products such as automobiles, televisions, VCRs, cameras, copy machines, cellular telephones, vending
machines, microwave ovens, medical instruments, and hundreds of additional products of al kinds. This
book is about how to program microcontrollers and use them in the design of embedded systems. A popular
microcontroller that has been used in awide variety of different productsisthe Maotorola 68HC11. Motorola
has recently introduced an upgrade of this microcontroller, the 68HC12, that has new, more powerful

instructions and addressing modes. This book emphasizes the use of the 68HC12 while at the same time
providing information about the 68HC11. It can therefore be used in courses that use both 68HC12 and
68HCII microcontrollers. This book isthe result of teaching various microcomputer interfacing courses over
the past 20 years. While the technology may change, the basic principles of microcomputer interfacing
remain largely the same and these basic principles are stressed throughout this book. However,
microcomputer interfacing is a subject that is learned only by doing. The courses that | have taught using this
material have all been project-oriented courses in which the students design and build real microcomputer
interfacing projects. A definite trend in microcomputer interfacing and in digital design in genera is a shift
from hardware design to software design. Microcomputer interfacing has always involved both hardware and
software considerations. However, the increasingly large-scale integration of the hardware together with
sophisticated software tools for designing hardware means that even traditional hardware design is becoming
more and more a software activity. In the past most software for microcomputer interfacing has been written
in assembly language. This means that each time a new and better microprocessor comes out the designer
must first learn the new assembly language. The advantage of assembly languageisthat it is"closest to the
hardware" and will allow the user to do exactly what he or she wantsin the most efficient manner. While
some feel that assembly language programs are more difficult to write and maintain than programs written in
ahigh-level language, the major disadvantage of assembly language programs is related to the obsolescence
of the microprocessor—when upgrading to a new or different microprocessor, all of the software has to be
rewritten! Even when upgrading from a68HCI | to a 68HC12, which is upward compatible at the sourcecode
level, to get the best performance from the 68HC12 you will need to rewrite the code to use the newer, more
powerful instructions and addressing modes. This has led to atrend of using high-level languages such as C
or C+ + for microcomputer interfacing. While this helps to solve the obsol escence problem—much of the
same high-level code might be reusable with a new microprocessor—high-level languages come with their
own problems. The development environment is not always the most convenient. One hasto edit the
program, compile it, load it, and then run it to test it on the real hardware. This edit-compile-test cycle can be
very time consuming for large programs. Without sophisticated run-time debugging tools the debugging of
the program on real hardware can be very frustrating. When designing microcomputer interfaces you would
like to be as close to the hardware as possible. What you would like is a computer language with the
advantages of both a high-level language and assembly language, with none of the disadvantages. It would
be niceif the language were also interactive so that you could sit at your computer terminal and literally
"talk" to the various hardware interfaces. The language should also produce compact code so that you can
easily embed the code in PROMS or flash memory for a stand-alone system. While you're at it why not
embed the entire language in your target system so that you can develop your program "on-line" and even
upgrade the program in the field once the product is delivered. Impossible, you say? In fact, just such a
language exists for almost any microprocessor you may want to use. The language is Forth and we will use a
derivative of it in this book to illustrate how easy microcomputer interfacing can be. We will use a unique
version of Forth called WHYP (pronounced whip) that is designed for use in embedded systems. WHY P
stands for Words to Help You Program. It is a subroutine threaded |anguage which means that WHY P words
arejust the names of 68HC12(11) subroutines. New WHY P words can be defined simply by stringing
previousy defined WHY P words together. A unique feature of Forth—and WHY P—isits simplicity. Itisa
simple language to learn, to use, and to understand. In fact, in this book we will develop the entire WHY P
language from scratch. We will see that WHY P consists of two parts—some 68HC12 subroutines that reside
on the target system (typically an evaluation board) and a C+ + program that runs on a PC and communicates
with the 68HC12 target system through a serial line. In the process of developing the WHY P subroutines on
the target system you will learn 68HC12 assembly language programming. When you finish the book you
will also know Forth. Previous knowledge of C + + will be helpful in understanding the C+ + portion of
WHY P that resides on the PC. The complete C+ + source code is included on the disk that accompanies this
book and in discussed in Chapters 16 and 17. However, these chapters are optional and are not required in
order to use WHY P to program the 68BHC12. Y ou will discover that you can develop large software projects

using WHY P in amuch shorter time than you could devel op the same program in either assembly language
or C. You might be surprised at the number of industrial embedded systems projects that have been
developed in Forth. Many small companies and consultants that use Forth don't talk much about it because
many consider it a competitive advantage to be able to develop software in a shorter time than others who
program in assembly language or C. In Chapter 1 you will learn about the architecture of the 68HC12 and
how to write a simple assembly language program, assemble it, download it to the target board, and execute
it. You will see how to write 68HC12 subroutines in Chapter 2 where you will learn how the system stack
works. We will then develop a separate data stack, using the 68HC12 index register, X, as a stack pointer.
This data stack will be used throughout the book to pass parameters to and from our 68HC12 subroutines
(WHY P words). We will seein Chapter 2 that this makes it possible to access our 6BHC12 subroutines
interactively, by simply typing the name of the subroutine on the PC keyboard. In Chapter 3 we will study
68HC12 arithmetic with emphasis on the new 16-bit signed and unsigned multiplication and division
instructions available on the 68HC12. We will use these instructions to create WHY P words for al of the
arithmetic operations. The power of WHY P comes from the fact that you can define new WHY P wordsin
terms of previously defined words. This makes WHY P an extensible language in which every time you write
aWHY P program you are really extending the language by adding new words to its dictionary. Y ou will
learn how to do thisin Chapter 4. In Chapter 5 we will took at the 68HC12 branching and looping
instructions and see how we can use them to build some high-level WHY P branching and looping words
suchasan IF ... ELSE ... THEN construct and a FOR ... NEXT loop. We will also seein this chapter how we
can do recursion in WHY P, that is, how we can have aWHY P word call itself. After the first five chapters
you should have a good understanding of the 68HC12 instructions and how they are used to create the
WHY P language. The next six chapters will use WHY P as atool to explore and understand the 1/0
capabilities of the 68HC12 (and 68HC11). The important topic of interruptsisintroduced in Chapter 6 and
specific examples of using interrupts in conjunction with various 1/0 functions are given in Chapters 7-11.
Parallel interfacing will be discussed in Chapter 7 where examples will be given of interfacing a6SHC12 to
seven-segment displays, hex keypads, and liquid crystal displays. Real-time interrupts are used to program
interrupt-driven traffic lights. Chapter 8 will cover the 6BHC12 Serial Peripheral Interface (SPI) where it will
be shown how to interface keypads and sevensegment displays using the SPI. The 68HCII and 68HC12
Analog-to-Digital (A/D) converter is described in Chapter 9 where an exampleis given of the design of a
digital compass. The 68BHC12 programmable timer is discussed in Chapter 10 where examples are given of
using output compares, input captures, and the pulse accumulator. Examples of using interrupts include the
generation of a pulse train and the measurement of the period of a pulse train. An example of storing hex
keypad pressingsin acircular queue using interruptsis also included in Chapter 10. As afina example of
using interrupts a design is given of a sonar tape measure using the Polaroid ultrasonic transducer. Chapter
11 deals with the Serial Communication Interface (SCI) which isthe module used by the 68HC12 to
communicate with the PC. Chapters 1-11 provide all the basic material needed to program a 68HC12
microcontroller for most applications. These chapters can form the basis of a one-term projects-oriented
capstone design course at the senior/graduate level. The material in Chapters 12 and 13 will be of interest to
those who want access to more advanced topics related to programming in WHY P Chapter 12 describes how
to convert ASCII number strings to binary numbers and vi... Users ReviewFrom reader reviews:

Peter Clark:Have you spare time for the day? What do you do when you have more or little spare time? Sure,
you can choose the suitable activity regarding spend your time. Any person spent their own spare time to
take awander, shopping, or went to typically the Mall. How about open aswell asread a book allowed
Design of Embedded Systems Using 68BHC12/11 Microcontrollers? Maybe it isto get best activity for you.

Y ou already know beside you can spend your time together with your favorite's book, you can more
intelligent than before. Do you agree with its opinion or you have other opinion?

Rick Maldonado:Do you really one of the book lovers? If so, do you ever feeling doubt if you find yourself
in the book store? Aim to pick one book that you find out the inside because don't evaluate book by its
protect may doesn't work here is difficult job because you are scared that the inside maybe not as fantastic as

in the outside appearance likes. Maybe you answer may be Design of Embedded Systems Using 68HC12/11
Microcontrollers why because the wonderful cover that make you consider about the content will not
disappoint a person. The inside or content is usually fantastic as the outside or perhaps cover. Y our reading
6th sense will directly guide you to pick up this book.

Thomas Evans:As we know that book is essential thing to add our expertise for everything. By a e-book we
can know everything you want. A book is arange of written, printed, illustrated or even blank sheet. Every
year had been exactly added. This e-book Design of Embedded Systems Using 68HC12/11 Microcontrollers
was filled about science. Spend your spare time to add your knowledge about your scientific disciplines
competence. Some people has different feel when they reading a book. If you know how big advantage of a
book, you can feel enjoy to read a e-book. In the modern eralike at this point, many ways to get book that
you just wanted.

Christopher Gonzalez: That reserve can make you to feel relax. This kind of book Design of Embedded
Systems Using 68HC12/11 Microcontrollers was vibrant and of course has pictures around. As we know that
book Design of Embedded Systems Using 68HC12/11 Microcontrollers has many kinds or type. Start from
kids until teens. For example Naruto or Investigator Conan you can read and think that you are the character
on there. Therefore not at al of book tend to be make you bored, any it offers up you feel happy, fun and
relax. Try to choose the best book for yourself and try to like reading which.

Download and Read Online Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard
E. Haskell #TOX6K9HFD4R

Read Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell for online
ebookDesign of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell Free PDF
downlOad, audio books, books to read, good books to read, cheap books, good books, online books, books
online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF
best books to read, top books to read Design of Embedded Systems Using 68HC12/11 Microcontrollers By
Richard E. Haskell books to read online.Online Design of Embedded Systems Using 68HC12/11
Microcontrollers By Richard E. Haskell ebook PDF downloadDesign of Embedded Systems Using
68HC12/11 Microcontrollers By Richard E. Haskell DocDesign of Embedded Systems Using 68HC12/11
Microcontrollers By Richard E. Haskell MobipocketDesign of Embedded Systems Using 68HC12/11
Microcontrollers By Richard E. Haskell EPUbTOX6K9HFD4R: Design of Embedded Systems Using
68HC12/11 Microcontrollers By Richard E. Haskell

