


Emulsions (de Gruyter Textbook)

By Tharwat F. Tadros

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros

Chapter 1 General Introduction

Definition of emulsions and the role of the emulsifier. Classification based on the nature of the emulsifier. Classification based on the structure of the system. General instability problems with emulsions: creaming/sedimentation, flocculation, Ostwald ripening, coalescence and phase inversion. Importance of emulsions in various industrial applications.

Chapter 2 Thermodynamics of Emulsion Formation and Breakdown Application of the second law of thermodynamics for emulsion formation: Balance of energy and entropy and non-spontaneous formation of emulsions. Breakdown of the emulsion by flocculation and coalescence in the absence of an emulsifier. Role of the emulsifier in preventing flocculation and coalescence by creating an energy barrier resulting from the repulsive energies between the droplets.

Chapter 3 Interaction Forces between Emulsion Droplets

Van der Waals attraction and its dependence on droplet size, Hamaker constant and separation distance between the droplets. Electrostatic repulsion resulting from the presence of electrical double layers and its dependence on surface (or zeta) potential and electrolyte concentration and valency. Combination of the van der Waals attraction with double layer repulsion and the theory of colloid stability. Steric repulsion resulting from the presence of adsorbed non-ionic surfactants and polymers. Combination of van der Waals attraction with steric repulsion and the theory of steric stabilisation.

Chapter 4 Adsorption of Surfactants at the Oil/Water Interface Thermodynamic analysis of surfactant adsorption and the Gibbs adsorption isotherm. Calculation of the amount of surfactant adsorption and area per surfactant molecule at the interface. Experimental techniques for measuring the interfacial tension.

Chapter 5 Mechanism of Emulsification and the Role of the Emulsifier Description of the factors responsible for droplet deformation and its break-up. Role of surfactant in preventing coalescence during emulsification. Definition of the Gibbs dilational elasticity and the Marangoni effect in preventing coalescence.

Chapter 6 Methods of Emulsification

Pipe flow, static mixers and high speed stirrers (rotor-stator mixer). Laminar and turbulent flow. Membrane emulsification. High pressure homogenisers and ultrasonic methods.

Chapter 7 Selection of Emulsifiers

The hydrophilic-lipophilic-balance (HLB) and its application in surfactant selection. Calculation of HLB numbers and the effect of the nature of the oil phase. The phase inversion temperature (PIT) method for emulsifier selection. The cohesive energy ratio method for emulsifier selection.

Chapter 8 Creaming/Sedimentation of Emulsions and its prevention Driving force for creaming/sedimentation: effect of gravity, droplet size and density difference between the oil and continuous phase. Calculation of the rate of creaming/sedimentation in dilute emulsions. Influence of increase of the volume fraction of the disperse phase on the rate of creaming/sedimentation. Reduction of creaming/sedimentation: Balance of the density of the two phases, reduction of droplet size and effect of addition of "thickeners'.

Chapter 9 Flocculation of Emulsions and its Prevention

Factors affecting flocculation. Calculation of fast and slow flocculation rate. Definition of stability ratio and its dependence on electrolyte concentration and valency. Definition of the critical coagulation concentration and its dependence on electrolyte valency. Reduction of flocculation by enhancing the repulsive forces.

Chapter 10 Ostwald Ripening and its Reduction

Factors responsible for Ostwald ripening: difference in solubility between small and large droplets and the Kelvin equation. Calculation of the rate of Ostwald ripening. Reduction of Ostwald ripening by incorporation of a small amount of highly insoluble oil. Reduction of Ostwald ripening by the use of strongly adsorbed polymeric surfactant and enhancement of the Gibbs elasticity.

Chapter 11 Emulsion Coalescence and its Prevention

Driving force for emulsion coalescence: Thinning and disruption of the liquid film between the droplets. The concept of disjoining pressure for prevention of coalescence. Methods for reduction or elimination of coalescence: Use of mixed surfactant films, use of lamellar liquid crystalline phases and use of polymeric surfactants.

Chapter 12 Phase Inversion and its Prevention

Distinction between catastrophic and transient phase inversion. Influence of the disperse volume fraction and surfactant HLB number. Explanation of the factors responsible for phase inversion.

Chapter 13 Characterisation of Emulsions

Measurement of droplet size distribution: Optical microscopy and image analysis. Phase contrast and polarising microscopyDiffraction methods. Confocal laser microscopy. Back scattering methods

Chapter 14 Industrial Application of Emulsions

- 14.1 Application in Pharmacy
- 14.2 Application in Cosmetics
- 14.3 Application in Agrochemicals
- 14.4 Application in Paints
- 14.5 Application in the Oil Industry

Read Online Emulsions (de Gruyter Textbook) ...pdf

Emulsions (de Gruyter Textbook)

By Tharwat F. Tadros

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros

Chapter 1 General Introduction

Definition of emulsions and the role of the emulsifier. Classification based on the nature of the emulsifier. Classification based on the structure of the system. General instability problems with emulsions: creaming/sedimentation, flocculation, Ostwald ripening, coalescence and phase inversion. Importance of emulsions in various industrial applications.

Chapter 2 Thermodynamics of Emulsion Formation and Breakdown

Application of the second law of thermodynamics for emulsion formation: Balance of energy and entropy and non-spontaneous formation of emulsions. Breakdown of the emulsion by flocculation and coalescence in the absence of an emulsifier. Role of the emulsifier in preventing flocculation and coalescence by creating an energy barrier resulting from the repulsive energies between the droplets.

Chapter 3 Interaction Forces between Emulsion Droplets

Van der Waals attraction and its dependence on droplet size, Hamaker constant and separation distance between the droplets. Electrostatic repulsion resulting from the presence of electrical double layers and its dependence on surface (or zeta) potential and electrolyte concentration and valency. Combination of the van der Waals attraction with double layer repulsion and the theory of colloid stability. Steric repulsion resulting from the presence of adsorbed non-ionic surfactants and polymers. Combination of van der Waals attraction with steric repulsion and the theory of steric stabilisation.

Chapter 4 Adsorption of Surfactants at the Oil/Water Interface

Thermodynamic analysis of surfactant adsorption and the Gibbs adsorption isotherm. Calculation of the amount of surfactant adsorption and area per surfactant molecule at the interface. Experimental techniques for measuring the interfacial tension.

Chapter 5 Mechanism of Emulsification and the Role of the Emulsifier

Description of the factors responsible for droplet deformation and its break-up. Role of surfactant in preventing coalescence during emulsification. Definition of the Gibbs dilational elasticity and the Marangoni effect in preventing coalescence.

Chapter 6 Methods of Emulsification

Pipe flow, static mixers and high speed stirrers (rotor-stator mixer). Laminar and turbulent flow. Membrane emulsification. High pressure homogenisers and ultrasonic methods.

Chapter 7 Selection of Emulsifiers

The hydrophilic-lipophilic-balance (HLB) and its application in surfactant selection. Calculation of HLB numbers and the effect of the nature of the oil phase. The phase inversion temperature (PIT) method for emulsifier selection. The cohesive energy ratio method for emulsifier selection.

Chapter 8 Creaming/Sedimentation of Emulsions and its prevention

Driving force for creaming/sedimentation: effect of gravity, droplet size and density difference between the oil and continuous phase. Calculation of the rate of creaming/sedimentation in dilute emulsions. Influence of

increase of the volume fraction of the disperse phase on the rate of creaming/sedimentation. Reduction of creaming/sedimentation: Balance of the density of the two phases, reduction of droplet size and effect of addition of "thickeners'.

Chapter 9 Flocculation of Emulsions and its Prevention

Factors affecting flocculation. Calculation of fast and slow flocculation rate. Definition of stability ratio and its dependence on electrolyte concentration and valency. Definition of the critical coagulation concentration and its dependence on electrolyte valency. Reduction of flocculation by enhancing the repulsive forces.

Chapter 10 Ostwald Ripening and its Reduction

Factors responsible for Ostwald ripening: difference in solubility between small and large droplets and the Kelvin equation. Calculation of the rate of Ostwald ripening. Reduction of Ostwald ripening by incorporation of a small amount of highly insoluble oil. Reduction of Ostwald ripening by the use of strongly adsorbed polymeric surfactant and enhancement of the Gibbs elasticity.

Chapter 11 Emulsion Coalescence and its Prevention

Driving force for emulsion coalescence: Thinning and disruption of the liquid film between the droplets. The concept of disjoining pressure for prevention of coalescence. Methods for reduction or elimination of coalescence: Use of mixed surfactant films, use of lamellar liquid crystalline phases and use of polymeric surfactants.

Chapter 12 Phase Inversion and its Prevention

Distinction between catastrophic and transient phase inversion. Influence of the disperse volume fraction and surfactant HLB number. Explanation of the factors responsible for phase inversion.

Chapter 13 Characterisation of Emulsions

Measurement of droplet size distribution: Optical microscopy and image analysis. Phase contrast and polarising microscopyDiffraction methods. Confocal laser microscopy. Back scattering methods

Chapter 14 Industrial Application of Emulsions

14.1 Application in Pharmacy

14.2 Application in Cosmetics

14.3 Application in Agrochemicals

14.4 Application in Paints

14.5 Application in the Oil Industry

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros Bibliography

• Sales Rank: #4654652 in Books

Published on: 2016-03-21Original language: English

• Number of items: 1

• Dimensions: 9.40" h x .60" w x 6.60" l, .0 pounds

• Binding: Paperback

• 226 pages

▶ Download Emulsions (de Gruyter Textbook) ...pdf

Read Online Emulsions (de Gruyter Textbook) ...pdf

Download and Read Free Online Emulsions (de Gruyter Textbook) By Tharwat F. Tadros

Editorial Review

About the Author

Tharwat F. Tadros, Wokingham, UK.

Users Review

From reader reviews:

Hollie Hoffman:

Information is provisions for people to get better life, information currently can get by anyone from everywhere. The information can be a expertise or any news even a concern. What people must be consider whenever those information which is from the former life are challenging be find than now could be taking seriously which one would work to believe or which one typically the resource are convinced. If you obtain the unstable resource then you buy it as your main information you will see huge disadvantage for you. All those possibilities will not happen within you if you take Emulsions (de Gruyter Textbook) as the daily resource information.

Billy Stinson:

This Emulsions (de Gruyter Textbook) is great guide for you because the content which can be full of information for you who have always deal with world and get to make decision every minute. This kind of book reveal it information accurately using great manage word or we can claim no rambling sentences inside. So if you are read the idea hurriedly you can have whole data in it. Doesn't mean it only gives you straight forward sentences but challenging core information with lovely delivering sentences. Having Emulsions (de Gruyter Textbook) in your hand like getting the world in your arm, details in it is not ridiculous just one. We can say that no guide that offer you world inside ten or fifteen minute right but this reserve already do that. So , this really is good reading book. Hi Mr. and Mrs. occupied do you still doubt in which?

John Guenther:

This Emulsions (de Gruyter Textbook) is completely new way for you who has curiosity to look for some information given it relief your hunger of information. Getting deeper you onto it getting knowledge more you know or you who still having small amount of digest in reading this Emulsions (de Gruyter Textbook) can be the light food to suit your needs because the information inside this particular book is easy to get through anyone. These books build itself in the form which is reachable by anyone, yeah I mean in the e-book form. People who think that in guide form make them feel tired even dizzy this guide is the answer. So there is no in reading a e-book especially this one. You can find actually looking for. It should be here for anyone. So , don't miss that! Just read this e-book style for your better life in addition to knowledge.

Gerald McMullen:

You can find this Emulsions (de Gruyter Textbook) by go to the bookstore or Mall. Merely viewing or reviewing it might to be your solve difficulty if you get difficulties for the knowledge. Kinds of this book are various. Not only by means of written or printed but can you enjoy this book by simply e-book. In the modern era just like now, you just looking from your mobile phone and searching what your problem. Right now, choose your current ways to get more information about your guide. It is most important to arrange you to ultimately make your knowledge are still change. Let's try to choose proper ways for you.

Download and Read Online Emulsions (de Gruyter Textbook) By Tharwat F. Tadros #JXI16C5USZV

Read Emulsions (de Gruyter Textbook) By Tharwat F. Tadros for online ebook

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Emulsions (de Gruyter Textbook) By Tharwat F. Tadros books to read online.

Online Emulsions (de Gruyter Textbook) By Tharwat F. Tadros ebook PDF download

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros Doc

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros Mobipocket

Emulsions (de Gruyter Textbook) By Tharwat F. Tadros EPub

JXI16C5USZV: Emulsions (de Gruyter Textbook) By Tharwat F. Tadros